GROUTING DESIGN DURING CONSTRUCTION PHASE IN A CLIENT PERSPECTIVE

Thomas Dalmalm, Swedish Transport Administration
CONTENT - CLIENT PERSPECTIVE

- Grouting concepts
- Grout properties
- Pricing
- Responsibility
- Contracts for grouting
Grouting concepts
- stop criteria's

• Flow
The rock fractures are filled up enough when the flow is less than a certain value during a time period, E.g. less than 2l/min during 5 minute

• Volume
The rock fractures are filled up enough when predicted volume is reached, E.g. 500 litre

• GIN
Grouting intensity number, GIN=P*V, the combination of pressure and volume sums up to fulfil the stop criteria

• Thickening
Decrease the grout w/c ratio during grouting in combination with a flow criteria

• RTGC (Time), for a specified aperture the time for achieving a grouted zone around the tunnel can be calculated. The method limits the excess use of grout. A development is needed to get the method on-line on the grouting rig for decision making.
South Link Stockholm 1998-2004

- Grouting chapter is named “Bergförstärkning genom injektering”
- PhD thesis, Swedenborg 2001, Grouting is No rock support
- Pressure 2,5 MPa above groundwater pressure.
- Stop criteria: Flow low less than 2 l/m, during 5 min

<table>
<thead>
<tr>
<th>Properties</th>
<th>Grout based on microcement</th>
<th>Grout based on groutcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield value (Pa)</td>
<td>≤1.0</td>
<td>3 - 8</td>
</tr>
<tr>
<td>Marshtime (s)</td>
<td>≤38</td>
<td>≤60</td>
</tr>
<tr>
<td>Filtration stability (ml) 75, 125</td>
<td>≥250</td>
<td>≥50</td>
</tr>
<tr>
<td>Water separation (%)</td>
<td>≤1</td>
<td>≤1</td>
</tr>
<tr>
<td>Volume change (%)</td>
<td>≤2</td>
<td>≤2</td>
</tr>
<tr>
<td>Setting time (h)</td>
<td>≤15</td>
<td>≤10</td>
</tr>
<tr>
<td>Shear strength, 4h (kPa)</td>
<td>≥0.2</td>
<td>≥0.5</td>
</tr>
<tr>
<td>Shear strength, 12 h (kPa)</td>
<td>≥20</td>
<td>≥30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Waterloss (LU)</th>
<th>w/c ratio</th>
<th>cement (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1,0</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>0,8</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>0,5</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>> 1,0</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>0,8</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>0,5</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Palmqvist
Löttingetunneln, Stockholm 2004-2006

• Grouting classes are based on Lugeon values

• Pressure 2-6 MPa above groundwater

• Grout volumes was calculated for each typical rock mass

• Stop criteria: Flow low less than 1 l/m, during 2 min

• Overlap minimum 4 m

<table>
<thead>
<tr>
<th>Waterloss (LU)</th>
<th>grout holes</th>
<th>special</th>
</tr>
</thead>
<tbody>
<tr>
<td>>10</td>
<td>65 holes</td>
<td>Double fans</td>
</tr>
<tr>
<td>10 ≥ Vfl > 4</td>
<td>65 holes</td>
<td></td>
</tr>
<tr>
<td>4 ≥ Vfl > 1</td>
<td>35 holes</td>
<td></td>
</tr>
<tr>
<td>1 ≤ Vfl</td>
<td>25 holes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grout type</th>
<th>Volume [liters]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>100</td>
</tr>
<tr>
<td>Sealing</td>
<td>150</td>
</tr>
<tr>
<td>Stopp</td>
<td>64</td>
</tr>
</tbody>
</table>
North Link, Stockholm
2006-2014

- Pressure 2.3-3.0 MPa above groundwater
- Grout 1 with: 40kg/dreilmeter and thereafter grout 2 with 30 kg/dreilmeter
- Hole spacing 2 m (4+4)
- Stop criteria: Flow low less than 1 l/m, during 2 min
- MWD was successfully used as a tool to analyse the rock mass for grouting and rock support
- Overlap 7m
Citytbanan, Stockholm
2009-2017

- Probe holes (4)
- Pressure 0.5-2.0 MPa above groundwater
- Hole spacing 2.5 m or 1.5 m (3+3)
- Stop criteria: 40 min grouting or 500 litre (21 m hole length)
- Mix 1: w/c ratio 0.8 grout cement
- Mix 2: w/c ratio 0.8 micro fine cement
- Mix 3: silica sol
- Overlap 5-8 m
Citybanan - One concept for grouting

1. One subproject followed the concept ~100%
2. One subproject partly changed concept 70%
3. One subproject argued that the concept didn’t work 0%

<table>
<thead>
<tr>
<th>Compliance</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 %</td>
<td>recent work with similar concept</td>
</tr>
<tr>
<td>70 %</td>
<td>no recent work similar concept, but good grouting experience</td>
</tr>
<tr>
<td>0 %</td>
<td>no recent work, minor grouting experience and a contractor who had low prices on grouting</td>
</tr>
</tbody>
</table>
Content

• Grouting concepts
• Grout properties
• Pricing
• Responsibility
• Contracts for grouting
Grout protocoll and real grout properties

190, 200, 220, 290, 310, 230, 225, 210, 230, 100, 300, 125, 250, 125, 300
Filterpump test

In laboratory 100% pass 75 µm filter

In field only 30% of the mixes pass 100 µm filter
Cup test

- Bruksblandning 1 (T1) Grön
- Bruksblandning 2 (T2) Blå
- Bruksblandning 4 (T4) Röd
Mixing of grout

<table>
<thead>
<tr>
<th></th>
<th>Water</th>
<th>Cement</th>
<th>Superplastizicer</th>
<th>Accelerator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>mixing 120s</td>
<td>mixing 30s</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>mixing 30s</td>
<td>mixing 30s</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>mixing 30s</td>
<td>mixing 120s</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Superplastizicer</td>
<td>mixing 180s</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Superplastizicer</td>
<td>mixing 240s</td>
</tr>
</tbody>
</table>

- During design stage the efforts of finding a grout concept is extensive.
- During bidding the contractor far too often have low experience on how to produce the different grouting concepts.
- The cement producers, from time to time, have as well limited knowledge of to mix the different recipes.
- The mixing order considerably affect the grout properties.
Content

- Grouting concepts
- Grout properties
- Pricing
- Responsibility
- Contracts for grouting
5 contracts at North link

Bergschakt 45%
Bergförankring 3%
Injektering 10% inkl. tidkostnad
Sprutbetong 8%
Öppen schakt 8%
Inklädnad 26%
Schakt (tunnel) Bult Injektering Sprutbetong Schakt (slänt) Inklädnad

Finland (Jari) Kostnad (mängd) Kostnad (mängd och tid)
Comparison of two access tunnels at the South Link project
- Both tunnels costed app. 10 million SEK

<table>
<thead>
<tr>
<th></th>
<th>Arena</th>
<th>Arla</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Predicted</td>
<td>Measured</td>
</tr>
<tr>
<td>Hole volume(litre)</td>
<td>32000</td>
<td>53046</td>
</tr>
<tr>
<td>Grout volume =</td>
<td>-</td>
<td>44 %</td>
</tr>
<tr>
<td>Hole volume (0 hål)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grout take(litre)</td>
<td>-</td>
<td>225</td>
</tr>
</tbody>
</table>
Bill of quantities and prices

<table>
<thead>
<tr>
<th></th>
<th>unit</th>
<th>Arena [SEK]</th>
<th>Arla [SEK]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grout hole</td>
<td>no</td>
<td>1650</td>
<td>325</td>
</tr>
<tr>
<td>Drilling</td>
<td>m</td>
<td>98</td>
<td>60</td>
</tr>
<tr>
<td>Grout cement</td>
<td>kg</td>
<td>3,6</td>
<td>6</td>
</tr>
<tr>
<td>Micro cement</td>
<td>kg</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>
Pricing of grouting

Drilling of 64 mm grout hole [SEK]
Pricing of grouting

Grouting cement [SEK]
Grouting of 1061 meter tunnel [million SEK]
Content

- Grouting concepts
- Grout properties
- Pricing
- Responsibility
- Contracts for grouting
Who is responsible?

- The contractor is responsible for the performance, but takes rarely responsibility for the grouting result

- The designer is responsible for the grouting design. The execution of the grouting works is not always according to the design

- The grout design is valid for the predicted geology, the geology is rarely as predict

Designers responsibility in EUR

<table>
<thead>
<tr>
<th>Country</th>
<th>Small projects</th>
<th>Large projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweden</td>
<td>0, 5 m EUR</td>
<td>0, 5 m EUR</td>
</tr>
<tr>
<td>Switzerland</td>
<td>30 m EUR</td>
<td>1000 m EUR</td>
</tr>
</tbody>
</table>
Predicted geology Stockholm Bypass

Frekvens av karterat Q-värde

- Q-värde Förbifarten (prognos)
Predicted and surveyed geology Stockholm Bypass
Predicted and surveyed geology Stockholm Bypass versus Northlink
Measure water leakage to tunnel

No responsible hands in the air waiving now
Content

- Grouting concepts
- Grout properties
- Pricing
- Responsibility
- Contracts for grouting
Swedish contract text

- “The employees of both parties must have a strong belief in and be inspired by a co-operation idea. A willingness to achieve the agreed goals and staffed with competent staff from both parties”

- Far too often we look at the issue only from our own perspective
- Far to often the co-operation idea is forgotten
- Far to often we have a superstition on our own legal position
Design Built contract for Grouting

- Grouting is very dependent of the geology
- The geology is difficult to describe for grouting
- The contractor is only responsible for what can be expected
- Grouting result isn`t always as expected

Grouting on Design & Build contracts is not the best idea
Bill of Quantity contracts for grouting

- In Sweden there is a long tradition of using BoQ contracts for grouting
- Was it better before and why?
- Contractors was Swedish (or Scandinavian), same contractor from project to project
- Grouting prices was higher 10 years ago
Concepts (1/2)

1. **Allocation of risk.** The ground and groundwater related risks should be assigned to the Employer, as the party who will most benefit from the completed project and as the party that can best control these risks. The performance related risk arising from expected ground conditions should be assigned to the Contractor.

2. **Disclosure of all available geological and geotechnical information.** All available information should be transmitted to prequalified tenderers, avoiding the use of exculpatory language.

3. **Inclusion of a contractual geotechnical baseline.** A geotechnical contractual baseline should be included that sets out the contractual limits of the conditions anticipated to be encountered during construction, thus providing clear distinctions in the contract documents between expected and unexpected underground conditions.

4. **Inclusion of an "Unforeseeable Physical Conditions" clause.** For the case that actual ground conditions encountered differ from the predicted ones, an "Unforeseeable Physical Conditions" clause should be incorporated in the contract documents to allow relief from the unforeseeable conditions and allow the contractual flexibility to compensate for them.

(From “Motivation for proposing a new Form of Contract for Tunnelling and Underground Works”, TG10, 4/4/2015)
Concepts (2/2)

5. **Implementation of a ground classification system and of supporting particular conditions that properly reflect the effort of excavation and stabilization.** The contractual classification of ground conditions should be based on the measures the Contractor has to take in order to excavate and support the ground, so as to minimize claims and disputes.

6. **Time for completion is largely influenced by ground conditions.** For this reason, time adjustment according to actually encountered ground conditions should be regulated in the contract documents.

7. **Provision of a flexible mechanism for remuneration according to ground conditions, foreseen and unforeseen.** A unit price contract payment system for items that are affected by ground and groundwater conditions should be used. The unit price structure should be organized to facilitate the distinction between fixed costs, time-related costs, value-related costs and quantity-related costs.

(From “Motivation for proposing a new Form of Contract for Tunnelling and Underground Works”, TG10, 4/4/2015)
The contract time can both be shorter and longer and the contract can handle this.

Starting at tunnel job predicted to 24 months, finishing after 12 or 36 months is taken care of by the contract.
In the dust bin

- Bill of Quantities contract with 25% volume rule
- Design & Build contract for grouting
- Very low contract prices
- WPT with low accuracy (are the flow below 1-2 litre/minute it is not always possible to measure)

Before grouting, after 1st and 2nd
In the Toolbox for grouting

• Grout mixing order instructions from cement producers

• Equal pricing between different activities in the tunnel

• A shared office during construction for contractor, designer and the client to promote co-operation (even in the tunnel)

• Competent personnel inspired by the cooperation idea

• Emerald book contract with incitements
Who wants change?

Who wants to change?

#Anonymous
Thanks for the attention